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Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility
(NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition
hohlraums and tune the implosion symmetry. As large amounts of power are transferred between
laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves
can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys.
Rev. Lett. 109, 195004 (2012)]. This increases the ion acoustic velocity and modifies the ion
acoustic waves’ dispersion relation, thus reducing the plasma response to the beat waves and the
efficiency of CBET. This pushes the plasma oscillations driven by CBET in a regime where the
phase velocities are much smaller than both the electron and ion thermal velocities. CBET gains
are derived for this new regime and generalized to the case of multi ion species plasmas.

I. INTRODUCTION

Overlapping multiple high power laser beams in plas-
mas can lead to cross-beam energy transfer (CBET), a
process similar to Brillouin scattering in which the beat
wave created by crossing laser beams drives a plasma os-
cillation that acts like a Bragg cell, scattering a beam in
the direction of the other one [1, 2]. CBET has turned out
to be a major player in inertial confinement fusion (ICF)
experiments over the past few years, for both direct-drive
and indirect-drive geometries. For indirect-drive exper-
iments on the National Ignition Facility (NIF), control
of CBET by wavelength separation tuning [3] has been
demonstrated at the beginning of the National Ignition
Campaign in 2009 [4, 5]. It has since then continuously
been used as a tool to control the equatorial energy bal-
ance inside the “hohlraum” targets, and has even been
developed further by adding additional wavelength tun-
ing capabilities to control the polar symmetry or help
mitigate backscatter by transferring laser energy away
from the high-backscatter risk regions of the hohlraum
and into the safer ones [6, 7]. On the other hand, for
direct-drive experiments at the Omega facility, CBET
moves energy from incoming laser beams into the re-
fracted outer edges of outgoing laser beams, thus reduc-
ing the amount of laser energy being deposited into the
coronal plasma [8, 9].

In CBET, the amount of power being transferred de-
pends on the amplitude of the density modulation driven
by the ponderomotive force of the beat wave, and on
the proximity of the driven oscillation to an ion acous-
tic mode of the plasma. For two laser beams with fre-
quencies ωm, ωn and wave vectors km, kn driving a beat
wave with wave vector k = km − kn and frequency
ωk = ωm − ωn, the coupling is thus maximum when
the phase velocity of the beat wave in the frame of the
plasma, vk = (ωk−k·V )/k (where V is the plasma flow),
is equal to the plasma sound speed cs, which will drive a
plasma oscillation δne/ne (where ne is the electron den-
sity) matching the ion acoustic wave dispersion relation
(cf. Fig. 1). This is equivalent to a Bragg cell, with

a modulation of the refractive index N =
√

1− ne/nc
(where nc is the critical density for the laser wavelength)
traveling at the sound speed of the medium. On NIF,
CBET is controlled by using different wavelengths for
different cones of laser beams, i.e. vk is adjusted via
ωk; typically, the corresponding wavelength shift ∆λk
(with ωk/ω0 = ∆λk/λ0, where ω0 and λ0 are the laser
frequency and wavelength) is a few Å, with vk < cs.
Whereas on Omega, where all the beams have identical
wavelength (ωk=0), CBET occurs because beams cross
at the Mach 1 surface of the expanding coronal plasma
where k · V = kcs (i.e. vk = cs in the plasma frame).

FIG. 1. Basic mechanism for CBET: a) two crossing laser
beams with frequencies ωm, ωn and wave vectors km, kn

drive a beat wave with frequency ωk = ωm − ωn, wave vector
k = km − kn, and phase velocity vk = (ωk − k · V )/k in
the frame of the plasma (V is the plasma flow velocity); b)
the ponderomotive force from the beat wave drives a density
modulation in the plasma, and hence a refractive index mod-
ulation, traveling at vk; c) if |vk| = cs, the refractive index
modulation acts as a Bragg cell scattering one laser beam in
the direction of the other (i.e. energy transfer); being able to
control vk, e.g. via the frequency shift ωk between the beams,
allows to set the direction of power transfer (via the sign) and
its amplitude (via the proximity of vk to cs).

CBET on NIF was initially predicted to be observable
and controllable because of the small amplitudes of the
density modulations created by the beat waves, prevent-
ing non-linear effects from occurring but still being large
enough to allow significant amounts of transfer due to
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cumulative effects from multiple crossing, taking place
in fairly uniform plasmas over very long (∼ mm) dis-
tances [3, 5, 10, 11]. The ion acoustic waves are typically
strongly damped, leading to broad resonance regions (as
schematically represented in Fig. 1c) and amplification
gains being less sensitive to gradients or non-uniformities
in the plasma.

Calculations using the linear response of an ion wave to
the beat ponderomotive force were in decent agreement
with the 2009 experiments where NIF was typically deliv-
ering 200 TW of peak laser power with small wavelength
separations (∆λ=1.5 - 5 Å) leading to small amounts of
transfer. However, in more recent experiments, where
peak laser power is usually between 400 and 500 TW
and where large amounts of power transfer are required
to achieve symmetric implosions of the DT fuel capsule
(∆λ=6 to 9 Å), linear calculations fail to reproduce the
experimental observables, and in fact usually predict a
full pump depletion of the NIF “outer beams” which has
never been seen in experiments. An artificial limiter on
the amplitude of the density modulations δn/n driven by
the beat waves has thus been introduced in the design
calculations in order to recover some level of predictive
capability [6, 8, 12]; it is however purely empirical and
lacking physics justification, and the values at which one
needs to saturate the waves are too low to be physically
justified (δn/n ' 10−4).

It was recently discovered that even though the density
modulations driven by CBET are small, having many of
these modulations coexisting in the same plasma can lead
to weak turbulence effects, which together with ion-ion
collisions can lead to turbulent ion heating in the region
where the laser beams overlap [13]. The resulting changes
in hydrodynamics condition can in turn saturate CBET
by modifying the ion acoustic dispersion relation.

In this article, we expand our analysis of CBET sat-
uration from stochastic ion heating, exploring the new
regime of driven plasma oscillations far from resonance
and generalizing to multi-ion species plasmas. The fol-
lowing section provides detailed analysis of the oscilla-
tions driven by CBET for typical NIF conditions, and
the associated CBET linear gains. Sec. III presents a
new “quasi-linear” particle code and shows results on
ion heating for multi-ion species plasmas. Finally, Sec.
IV shows the dependence of CBET gains to wavelength
shifts for NIF conditions, and gives new expressions for
linear gains in the small ∆λ limit, i.e. when the ions have
been sufficiently heated so that the beat waves’ phase ve-
locities become smaller than the ion phase velocity. Lo-
calization of heating rates and flow acceleration in NIF
hohlraums are also presented. In the appendix we show
the derivation of a reduced fluid model from quasi-linear
theory and calculate the expression of electron heating;
it is shown that electron heating from weak turbulence
should be negligible for typical NIF conditions, the en-
ergy deposited in the plasma from wave-particle interac-
tion going primarily in the ions.

II. LINEAR EXPRESSIONS FOR THE DRIVEN
PLASMA OSCILLATIONS AND CONVECTIVE

GAINS FOR NIF CONDITIONS

In this section we derive the expressions of the plasma
oscillations driven by beat waves between crossing pairs
of laser beams, as well as the convective gains for laser
scattering off these oscillations, and give typical values
for NIF conditions.

A. Density perturbation

Each pair of crossing laser beams (m, n) drives a beat
wave with wave vector k = km−kn and frequency ωk =
ωm − ωn. If the two beams have different frequencies,
then ωk 6= 0 and the beat wave has a phase velocity
vk = kωk/k

2. In the rest of the paper, we will assume
that the frequency shift between the laser beams is small,
ω � ωm, ωn, so that k ' 2k0 sin(θk/2), where kn '
km = k0 is the lasers’ wave numbers, and θk is the angle
between the two laser beams.

The ponderomotive potential from the beat wave ϕp
acts on the electrons of the plasma, creating a charge
separation and thus an electrostatic potential φ acting
on both the electrons and the ions. The forces exerted
on the electrons and the ions are thus respectively: Fe =
e∇(ϕp+φ) and Fi = −qi∇φ, where qi = Ze is the charge
of the ion.

Poisson’s equation connects the electrostatic potential
φ to the resulting density perturbation in the plasma:
−∇2φ = 4π

∑
α qαδnα, where the summation is taken

over the species (i.e. α = e or i). In the following we
will assume that the potentials have an envelope slowly
varying in space and time compared to the rapid os-
cillation of the beat wave: ϕp = 1

2 ϕ̂p exp[iψ] + c.c.,

φ = 1
2 φ̂ exp[iψk] + c.c., where ψk(r, t) = k · r − ωkt is

the phase of the beat wave (in the rest of the paper, the
“hat” notation will refer to a complex enveloped quan-

tity, i.e. f = |f̂ | cos(ψ) where the envelope f̂ is slowly
varying compared to the phase ψ). The expression for
the density perturbation can then be obtained from the
Vlasov equation:

∂fα
∂t

+ v ·∇fα +
Fα
mα
· ∂fα
∂v

= 0, (1)

where α = e or i. Separating the response to the
beat wave’s potential from the rest of the distribution,
i.e. fα(r,v, t) = fα0(r) + δfα(r,v, t), with δnα(r, t) =∫
d3vδfα(r,v, t) and with the density perturbation being

enveloped similarly to the potential that is driving it, i.e.

δnα = 1
2δn̂α exp[iψk] + c.c. and fα = 1

2 f̂α exp[iψk] + c.c.,
gives:

δn̂α = − qα
mα

(φ+ δαeϕp)

∫
k · ∂fα0

∂v

d3v

ωk − k · v
, (2)
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where α = e or i and δαe is a Kronecker delta (i.e. the
ponderomotive potential is only acting on the electrons).

Using the usual definitions for the electron and ion
susceptibilities,

χek =
4πq2e
k2me

∫
k·
∂fe
∂v

d3v

ωk − k · v
, (3)

χik =
∑
j

4πq2j
k2mj

∫
k · ∂fi

∂v

d3v

ωk − k · v
, (4)

where the summation for the ion susceptibility is over
the different ion species j, and using Poisson’s equation
gives:

φ(1 + χek + χik) = −ϕpχek. (5)

The electron density perturbation can then be ex-
pressed as:

δn̂e
ne

= −ϕ̂pKk
k2c2

ω2
pe

, (6)

where Kk = χek(1 + χik)/(1 + χek + χik) and ωpe is the
background electron plasma frequency.

The ponderomotive potential can be expressed for ar-
bitrary polarizations of the two crossing laser beams m,
n. Let (xm, ym, zm) and (xn, yn, zn) be the two beams’
bases, where z is the propagation direction of the beam.
The normalized vector potentials for the two beams can
be decomposed onto the two transverse directions x and
y:

am =
1

2
[âmxxm + âmyym] eiψm + c.c., (7)

an =
1

2
[ânxxn + ânyyn] eiψn + c.c., (8)

where ψm = km · r − ωmt is the phase of the beam m
and ψn is the phase of beam n. The vector potentials
are normalized in the usual way, as a = vosc/c where
vosc is the electron quiver velocity in the laser field, i.e.
a = (e/mcω)E where ω and E are the laser’s frequency
and electric field; this is also equivalent to |â| = 0.855×
10−9 λµ

√
I where I is the laser intensity in W/cm2 and

λµ its wavelength in microns.
The ponderomotive potential for the total electric field

is:

φp = −1

2

e

re
(am + an)2, (9)

where re = e2/mec
2 is the classical electron radius.

Taking only the beat component ϕp = 1
2 ϕ̂p exp[iψk] +

c.c. oscillating at ψk = ψm − ψn gives:

ϕ̂p = −1

2

e

re

[
âmxâ

∗
nxxm · xn + âmxâ

∗
nyxm · yn

+âmyâ
∗
nxym · xn + âmyâ

∗
nyym · yn

]
. (10)

Let us first consider the case where the two beams
are linearly polarized, for example along their x axes:
am = 1

2 âmx exp[iψm]+c.c.. In this case, we simply have:

|ϕ̂p|‖ =
1

2

e

re
|âm||ân| cos θmn (11)

where θmn = xm ·xn is the angle between the two polar-
ization vectors of the beams.

On the other hand, most large scale facilities have po-
larization mixing schemes. On NIF, laser beams are
grouped into quadruplets or “quads”, as shown in Fig.
2. Two of the beams in a quad have their polarization
direction (say, ym) along the radial direction θ, and the
other two beams are polarized perpendicularly with xm
along the azimuthal direction φ (cf. Fig. 2).

FIG. 2. NIF geometry: 192 laser beams grouped in 48
quadruplets or “quads” enter the cylindrical “hohlraum” cav-
ity through the laser entrance holes (LEH) at both ends of
the hohlraum. The “inner beams”, at 23.5◦ and 30◦ from the
hohlaum axis and hitting the hohlraum wall near the waist,
are shown in red, whereas the “outer beams”, at 44.5◦ and
50◦ from axis, are shown in blue and hit near the LEH. Also
shown is a polar view of the 24 quads from the upper hemi-
sphere; the number next to each quad is its azimuthal angle
in degree. The zoomed-in view of one of the quads shows the
“checkerboard” polarization arrangement of the 4 beams in a
quad.

The fields between the four beams are spatially
smoothed by phase plates and are uncorrelated from one-
another, so taking an ensemble average on Eq. (10) (i.e.
averaging in the transverse spatial dimensions over mul-
tiple speckles widths) gives:

|ϕ̂p|2P.S. =
e2

4r2e

[
|âmx|2|ânx|2(xm · xn)2 + |âmx|2|âny|2(xm · yn)2

+|âmy|2|ânx|2(ym · xn)2 + |âmy|2|âny|2(ym · yn)2
]
, (12)
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where the cross-terms ensemble-average to zero (“P.S.”
in the subscript refers to polarization smoothing).

Assuming that the total power is equally distributed
between the four beams in a quad, i.e. |âmx|2 = |âmy|2 =
1
2 |âm|

2, gives:

|ϕ̂p|2P.S. =
e2

16r2e
|âm|2|ân|2

[
(xm · xn)2 + (xm · yn)2

+(ym · xn)2 + (ym · yn)2
]
. (13)

Noticing that (xm ·xn)2 + (xm ·yn)2 = 1− (xm ·zn)2,
etc., finally gives:

|ϕ̂p|2P.S. =
e2

16r2e
|âm|2|ân|2

[
1 + cos2(θk)

]
, (14)

where θk = zm · zn is the angle between the quads m
and n.

In summary, the plasma oscillation driven by each beat
wave between two NIF quads can be expressed as:

∣∣∣∣δn̂ene
∣∣∣∣ = |Kk| sin2

(
θk
2

)
1− ñ0
ñ0

|âm||ân|
√

1 + cos2 θk,(15)

where ñ0 = n0/nc is the background electron density
normalized to the critical density for the laser frequency,
and θk is the angle between the two quads’ k-vectors.

It can easily be shown that for two laser beams with
random polarizations in the (x, y) plane, the same ex-
pression as for two NIF quads is obtained.

The amplitude of the corresponding electrostatic po-
tential is:

|φ̂k| =
e

4re

∣∣∣∣ χek
1 + χek + χik

∣∣∣∣ |âm||ân|√1 + cos2 θk.(16)

The formula for NIF quads, averaging the speckles and
polarization effects, is appropriate as long as: i) the laser
spots from the four beams are well superimposed in the
plasma (far-field), so that all polarizations are present
at any point in the far field; ii) the waves remain small,
so that non-linear correlations between initially uncorre-
lated fields can be neglected; and iii) the plasma condi-
tions remain nearly constant over a few speckle widths
(i.e. a few tens of microns for NIF’s F/8 aperture and
351 nm wavelength).

B. Linear gains for NIF parameters

The linear convective CBET gains between two laser
beams (m, n) can be derived from the wave equation for
the total vector potential a = am + an:(

∂2t + ω2
p0 − c2∇2

)
a = −ω2

p0

δn

n0
a, (17)

where ω2
p0 = 4πe2n0/me is the background electron

plasma frequency with n0 the background electron den-
sity such that ne = n0 + δn. Collecting the terms in
phase with ψm and aligned with xm(i.e. proportional to
exp[iψm]xm) and applying the usual paraxial and steady
state approximations gives:

(
∂z +

k′m
2km

)
âmx = −i

ω2
p0

4kmc2
δn̂

n0
(ânxxm · xn + ânyxm · yn),(18)

where k′m = ∂zkm is the z-derivative of the wavenumber
of the beam m (when a density gradient is present).

Using the expression of δn̂ from Eqs. (6) with the
full expression for the ponderomotive potential from Eq.
(10), and averaging the speckles and crossed polarizations
effects as was done for the expression of the density per-
turbation gives the following formula for two NIF quads:

∂z|âm|2 = −Im(Kk)
k2

8km
|âm|2|ân|2(1 + cos2 θk). (19)

Assuming small gains from multiple quads, as is typical
on NIF, one can generalize the formula for the convective
gain of a quad m from all the other quads n it encounters
along its way:

∂z|âm|2 = |âm|2
∑
n

γmn, (20)

The total gain rate for the quad m is the sum of
the contributions from the intersecting quads, Γm =∑
n γmn, with:

γmn = −Im(Kk)
k2

8km
|ân|2(1 + cos2 θk). (21)

C. Typical parameters for NIF conditions

As shown in Fig. 2, 24 quads overlap at each laser
entrance hole (LEH) as they enter a NIF hohlraum.
Eight are “inner” quads (shown in red), hitting near the
hohlraum waist: 4 inner quads propagate at 23.5◦ from
axis and 4 propagate at 30◦ . The other 16 quads are
“outer” quads (shown in blue), with 8 of them propagat-
ing at 44.5◦ and the other 8 at 50◦ from axis.

Fig. 3 shows the amplitudes of the density modula-
tions and the gain rates for typical NIF conditions at
the LEH during the beginning of the main laser pulse.
The “inner” and “outer” quads have intensities of 5×1014

and 1015 W/cm2 respectively. We assume a wavelength
separation between inner and outer beams of ∆λ=6Å.
This is typical of current NIF experiments, as required
to transfer enough energy from the outer beams to the
inner beams in order to achieve symmetric implosions.

We use typical LEH plasma conditions at the beginning
of the main pulse: the background electron density is
n0 = 3%nc and the electron and ion temperatures are 2.8
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and 0.8 keV respectively. The plasma is composed of fully
ionized helium (Z=2). We also assume that the electrons
and ions are Maxwellian, so the susceptibilities can be
expressed using the derivative of the plasma dispersion
function Z ′:

χek = − 1

2(kλDe)2
Z ′
[
ωk − k · V√

2kvTe

]
, (22)

χik =
∑
j

− αj
2(kλDe)2

Z ′

[
ωk − k · V√

2kvTij

]
, (23)

where V = 〈v〉 is the average (flow) velocity, and
αj = Z∗j Te/Tij with Z∗j = fjZ

2
j /Z̄ and fj , Zj , Tij are

the fraction, atomic number and temperature of the ion
specie j. The average charge is Z̄ =

∑
j fjZj , so that

ne = Z̄ni.

FIG. 3. a) phase velocities of the 276 beat waves created
by crossing pairs of quads, from the 24 quads overlapping at
each LEH of a NIF hohlraum (z is the hohlraum axis; 148 of
the beat waves actually have no phase velocity since they are
created by quads with similar wavelengths); b) amplitudes of
the density fluctuations created by the beat waves; c) elec-
trostatic potentials driven by the beat waves (normalized to
e/re); d) gain rates Γm for each of the 24 quads (such that
∂z|âm|2 = Γm|âm|2), ordered against the azimuthal angle of
the quads in the NIF chamber (cf. Fig. 2).

The presence of 24 quads overlapping in the same
∼mm3 volume at the LEH leads to 276 possible pairs
between quads and therefore 276 driven beat waves. The
276 beat waves’ phase velocities are shown in Fig. 3a.
In our example, we assumed two different wavelengths
between cones of laser beams, as shown in Fig. 2 (NIF

can also operate with three different wavelengths, to tune
higher-order asymmetry modes [6, 7, 14]). Therefore, out
of the 276 possible pairs, 128 are composed of an inner
and an outer quad and thus have a finite phase velocity
(since the quads have different wavelengths, i.e. ωk 6= 0),
and the 148 others are between two inners or two out-
ers and thus have zero phase velocity. As can be seen in
Fig. 3a, the phase velocities range from 0 to ∼ c/1000
and exhibit axis-symmetry around z, the hohlraum axis.
The velocity vectors are all oriented towards the exterior
of the hohlraum (i.e. they all have a positive vz compo-
nent).

Fig. 3b shows the density perturbations from these
276 beat waves, which are typically of the order of
|δn̂|/n0 ≈ 10−3. The electrostatic potentials driven by
these waves are shown in Fig. 3c, and typically range
from 10−6 up to almost 10−4 × e/re. Finally, the expo-
nential gain rates Γm for each of the 24 quads are shown
in Fig. 3d, as a function of the azimuthal angle of the
quad (as represented on the polar map from Fig. 2).
The 8 inner quads have positive gain rates of about 10
mm−1, whereas the 16 outer beams have negative values
(because they give energy to the inner beams).

Note that the gain rates as calculated from such linear
calculations are very high: for uniform plasma conditions
and an interaction region being 0.5 to 1 mm long between
all 24 quads, these gains would lead to full depletion of
the outer beams (i.e. the inner beams would have their
power increase by ×3). This has never been observed
in the experiments, where various measurement methods
from different diagnostics systematically give estimates
of a 50% to 100% power increase on the inner beams
(i.e. 25% to 50% power reduction on the outer beams)
as required for symmetric implosions.

III. QUASI-LINEAR PARTICLE CODE

In order to investigate how kinetic effects and weak
turbulence can influence the CBET gains for NIF con-
ditions, we have developed a particle code specifically
adapted to our situation, where particles interact with a
very large number of small amplitude externally-driven
waves. The code tracks particles evolving in multiple
overlapping electrostatic fields created by the pondero-
motive potentials of the 276 beat waves resulting from all
the couplings between pairs of quads, among 24 quads.
The electrostatic fields evolution is done in the spirit of
quasi-linear theory, by taking the spatial average of the
distribution function of particles.

The interaction of particles with each driven wave
therefore includes nonlinear effects from particle trap-
ping, which is generally the most efficient saturation
mechanism for ion acoustic waves [11]. On the other
hand, the effects from many overlapping electrostatic
waves is treated in a quasi-linear fashion, i.e. it ac-
counts for the distortion of the ion distribution function
(weak turbulence) but neglects higher order wave-wave
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couplings.
Only ions will be used in these calculations. We show

in the appendix that for our conditions, the electrons are
expected to remain Maxwellian and undergo negligible
heating from ion acoustic turbulence.

The code calculates the trajectory of each parti-
cle [r(t),v(t)] by integrating its equation of motion:
midv/dt = −qi

∑
k∇φk(r, t), where mi is the ion mass

and qi = Ze is its charge. The integration is carried out
with a Runge Kutta method.

If we assume that the laser fields envelopes are constant
in time and spatially uniform, then ϕ̂p is also constant.
It is then straightforward to express the time-evolution
of the fields φk using quasi-linear theory [15–17].

We decompose the ion distribution function into its
spatial average and the responses to each of the beat
waves’ electrostatic potentials:

fi(r,v, t) = fi0(v, t) +
∑
k

fk(r,v, t), (24)

with fk(r,v, t) = 1
2 f̂k(t) exp[iψk] + c.c.. Taking the spa-

tial average of the Vlasov equation (Eq. (1)) gives:

∂f0
∂t

= − qi
2mi

∑
k

Im

[
k · ∂f̂

∗
k

∂v
φ̂k

]
, (25)

where the linearized plasma perturbation f̂k is given by:

f̂k(t) = − qi
mi

φ̂k(t)k · ∂f0(t)

∂v

1

ωk − k · v
. (26)

Inserting the latter expression for f̂k in Eq. (25) gives
the familiar diffusion equation from quasi-linear theory:

∂f0(v, t)

∂t
=

∂

∂v
· D̄ · ∂

∂v
f0(v, t) (27)

with the quasi-linear diffusion operator:

D̄ =
q2i

2m2
i

∑
k

|φ̂k|2kkIm
1

ωk − k · v
. (28)

Because the beat waves are externally driven and typ-
ically do not verify the ion acoustic resonance condition
(i.e. they are not ion acoustic waves), the usual assump-
tions arising at this point in quasi-linear theory, such as
the one consisting in separating the frequency into a real
component and an infinitesimally small imaginary part
[18], is not valid here, and we shall instead pursue the
derivation keeping the full expression for the susceptibil-
ities.

Following the same steps as for the linear calculation,
we get the following expression for the electrostatic po-
tential φk associated with the beat wave between the
quads m and n (with ψk = ψm − ψn), which is then
used in the equation of motion of the particles:

φk(r, t) =
e

4re
|âm||ân|

√
1 + cos2 θmn

∣∣∣∣ χek
1 + χek + χik(t)

∣∣∣∣
× cos(k · r − ωkt+ ρk). (29)

The electrons are supposed to remain Maxwellian (cf.
appendix), and their thermal velocity (vTe = 2.2 × 107

m/s for Te = 2.8 keV) is much larger than the phase ve-
locities of the beat waves (vk = [0−4×105] m/s for ∆λ=6
Å), so χek ' 1/(kλDe)

2. The ion susceptibility adiabat-
ically follows the time evolution of the space-averaged
distribution function:

χik(t) =
∑
j

4πq2j
k2mj

∫
k · ∂fij0(v, t)

∂v

d3v

ωk − k · v
. (30)

The time-averaged distribution function fij0(v, t) for
each ion specie j is calculated for each beat wave by pro-
jecting the distribution function along the direction of
k (for example, let us assume that k is along x), which
reduces the integral to one dimension:

χik(t) =
ω2
pi

nik2

∫
k · ∂f0(t)

∂v

d3v

ωk − k · v

= −
ω2
pi

nik2

∫
F0(vx)

∂vx

dvx
vx − vk

, (31)

where F0(vx) =
∫
f0(v)dvydvz. The integration is per-

formed numerically following the same method as in Ref.
[19]. The 1D distribution function F0(vx) is calculated
by binning the velocities of all the particles (projected
along k). This is the most time-consuming step of the
code, since many (276, i.e. one for each beat wave) dis-
tributions need to be calculated from a large number of
particles (we typically get noise-free results for ∼ 107 to
∼ 108 particles). This step is thus split using parallel cal-
culations where each CPU calculates one F0(vx) (which
therefore requires 276 CPUs).

Finally, a binary collision scheme is used to calculate
collisional effects: at each time step, the particles are
shuffled and grouped in pairs (we use the Fisher-Yates
algorithm) and each pair (α, β) undergoes an elastic col-
lision, i.e.

vα(t+ δt) = vα(t) +
µαβ
mα

∆u,

vβ(t+ δt) = vβ(t)− µαβ
mβ

∆u, (32)

where µαβ is the reduced mass and ∆u is taken from
Takizuka and Abe [20]. This scheme also accounts for
collisions between ions of different species.

In summary, our code follows the following steps at
each time interval t→ t+ δt:
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1. the 3D position and velocity of each particle r(t+
δt),v(t+δt) are calculated by integrating the equa-
tion of motion using a Runge-Kutta algorithm;

2. the resulting new particle velocities are projected
along the velocity of each beat wave k in order to
get the 1D distribution F0(vx);

3. F0(vx) is then integrated using Eq. (31), following
the numerical scheme of Ref. [19], in order to get
χik(t+δt) and therefore φk(t+δt) (from Eq. (29));

4. a binary collision scheme is then applied to all
the particles, which have subsequently shuffled and
grouped in pairs following Ref. [20].

Results from the particle code have recently been pre-
sented in Ref. [13] for the case of He; here, we present
new results for a multi-species plasma of C5H12. Fig. 4
shows the distribution function plotted on a logarithmic
scale as a function of vz (velocity along the hohlraum

axis z) and v⊥ =
√
v2x + v2y, for the hydrogen and carbon

ions. Both species are initialized with the same ion tem-
perature Ti=0.8 keV. The green dots represent the phase
velocities of the 276 beat waves previously shown in Fig.
3a.

As shown in Fig. 4, whereas most of the beat waves’s
phase velocities are of the order of vTi or less for the
hydrogen ions at t=0 (at most, vk ' 2vTi for the fastest
beat waves), the phase velocities range from 0 to > 10vTi
for the carbon ions whose thermal velocity is lower than
for the hydrogen ions. Ion heating is observed, similarly
to Ref. [13], and after 500 ps, the hydrogen ions have
heated to temperatures such that all the beat waves’
phase velocities are smaller than vTi. On the other hand,
the carbon ions keep having beat waves near vTi for much
longer times, which leads to a stronger and more sus-
tained heating. The carbon distribution function is also
noticeably distorted even after 500 ps, as thermalization
from ion-ion collisions doesn’t quite compensate the dis-
tortion from weak turbulence.

Figure 5a shows the temperatures for the two species,
showing ion temperatures greater than 10 keV after 1
ns for the carbon ions, whereas the hydrogen ions only
heat up to less than 4 keV. Figure 5b shows the CBET
gain rates for C5H12 compared to He (as in Ref. [13]).
The gains are overall very similar and decrease at similar
rates due to ion heating.

IV. SATURATION OF CBET FOR NIF
CONDITIONS

A. CBET gains for plasma oscillations driven
off-resonance

We have shown that stochastic ion heating saturates
the CBET mechanism by modifying the local plasma con-
ditions: when the beat waves’ phase velocities are close to

FIG. 4. Distribution function (log scale, arbitrary units) of
the hydrogen and carbon ions of a C5H12 plasma at t=0 (when
both species are initially Maxwellian with the same temper-
ature, Ti = 0.8 keV) and after 500 ps, plotted as a function
of the longitudinal velocity vz (along the hohlraum axis) and
the transverse velocity v⊥ =

√
v2x + v2y. The green dots rep-

resent the beat waves’ phase velocities (cf. Fig. 3a). Due
to the symmetry around the hohlraum axis on NIF (cf. Fig.
2), each green dot marks the position of 4 beat waves sym-
metrically distributed every 90◦ in azimuth, and the particle
distribution function is essentially axisymmetric around the
hohlraum axis.

FIG. 5. a) ion temperature (defined in the local Maxwellian
limit, i.e. 3

2
kBTi = 1

2
mi(〈v2〉 − 〈v〉2) for the carbon and hy-

drogen ions in a C5H12 plasma with an initial ion tempera-
ture Ti=0.8 keV for the hydrogen and carbon ions; b) average
CBET gain rate Γm for a NIF inner quad for a C5H12 plasma
and a pure He plasma.
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the ion thermal velocity, wave-particle energy exchange
and ion-ion collisions heat the bulk of the ion distribution
at very fast rates (several keV/ns). The ion temperature
tends to stabilize after the ion acoustic velocity has been
increased to the point where none of the beat waves are
close to resonance anymore. In this limit, most of the
beat waves have a phase velocity which is smaller than
the thermal velocity of the ions.

We can derive a simplified expression for the CBET
gains in this limit of off-resonance driven waves. Similar
to Ref. [13], we will assume that the ion-ion collisions
thermalize the distribution rapidly enough to justify a
local Maxwellian approximation.

The expression for the ion susceptibility given in the
linear limit by Eq. (23) can be expressed for the limit of
small arguments of the Z ′ function when vk = ωk/k �
vTi (we assume that V = 0 for simplicity; if a finite
plasma flow is present ωk should just be replaced by ωk−
k · V ). This gives:

χik '
∑
j

αj
κ2

[
1 + i

√
π

2

vk
vTi,j

]
(33)

where κ = kλDe, αj = Z∗j Te/Ti and Z∗j = fjZ
2
j /Z̄.

As ion are heated up, Ti can in principle become of the
same order as Te so one cannot assume that ZTe/Ti � 1.
Assuming nevertheless that 1/(kλDi)

2 � 1, the term
Kk = χek(1 + χik)/(1 + χek + χik) in the coupling coef-
ficient can be expressed as:

Im(Kk) ' Im(χik)

κ4|εk|2
, (34)

where εk = 1 +χek +χik. Using the small phase velocity
limit from Eq. (33) for the ion susceptibility gives:

|εk|2 '
1

κ4
(1 +

∑
j

αj)
2, (35)

and:

Im(χik) ' 1

κ2

√
π

2

∑
j

αj
vk
vTi,j

. (36)

The coupling coefficient thus takes the following form:

Im(Kk) '
√
π

2

vk
κ2

∑
j

αj

vTi,j

(1 +
∑
j αj)

2
. (37)

The gain seen by the quad m (“seed”) from quad n
(“pump”), per Eq. (21), thus takes the following form:

γmn = −
√
π

2

ωk|ân|2(1 + cos2 θmn)

16k20λ
2
De sin θmn/2

∑
j

αj

vTi,j

(1 +
∑
j αj)

2
(38)

∝ In
ne
Te

∆λmn

∑
j αj/

√
Ti,j

(1 +
∑
j αj)

2
, (39)

where ∆λmn is the wavelength difference between the
quads m and n.

Figure 6 shows the average gain rate for inner quads
on NIF vs. ∆λ, the wavelength shift between inner and
outer quads. This curve is calculated using the reduced
quasi-linear model described in Ref. [13] (and detailed
in the appendix), for a pure He plasma with the same
conditions used in the previous sections. The highlighted
region shows the typical NIF operational range of ∆λ, i.e.
∼ 5 to 9 Å.

FIG. 6. bla

At t=0, the curve exhibits significant oscillations be-
tween 6 and 14 Å. As ∆λ is increased, some of the beat
waves’ phase velocities (vk ∝ ∆λ) will hit the ion acoustic
resonance, i.e. vk = cs where cs is the ion acoustic ve-
locity. Each peak in the curve corresponds to a group of
beat wave becoming resonant. At later times, ion heating
pushes the beat waves off resonance while making these
resonance regions broader, thus smoothing the curve out;
the gain region extends to longer wavelength separations,
beyond 20-25 Å.

Because the ion thermal velocity is increased, most of
the beat waves get into the regime described above, where
vk � vTi. As a result, the curve is essentially linear
vs. ∆λ for wavelengths shifts up to 8 to 10 Å, vs. up
to 4 Å at t=0. This is in qualitative agreement with
NIF experiments, which indicate linear scalings of power
transfer vs. ∆λ for shifts up to 8 Å.

B. Ion heating and momentum deposition in NIF
hohlraums

Finally, we show maps of ion heating rates for NIF
hohlraum conditions, using the fluid formulae derived in
the appendix. Figure 7a shows the initial ion tempera-
ture as calculated by the radiation-hydrodynamics code
Lasnex for the upper half of a NIF hohlraum at time
of peak laser power. The green contour is the electron
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density isocontour at nc/4. The ion temperature is cal-
culated to be 4 keV near the LEH in the expanding gold
plasma; however the volume where all the laser beams
overlap (near x=0 and z=5 mm) is located in a pure
helium plasma with Ti ' 1 keV.

The heating rate dTi/dt is shown in Fig. 7b. Heating
rates of 6 to 7 keV/ns are obtained, for a very localized
region of ∼ 1 mm3 at the LEH. These rates correspond
to an initial increase of ∼60% per 100 ps (we expect
the heating to slow down and stabilize after ∼0.5 ns, as
described in Ref [13]).

FIG. 7. a) initial ion temperature calculated by the Lasnex
code at peak laser power for the upper half of a NIF hohlraum;
b) ion heating rate (in keV/ns) calculated by our quasi-linear
model; c) initial flow velocity along z (hohlraum axis) cal-
culated by Lasnex at the same time, and d) acceleration of
the flow due to momentum deposition. The green contour
represents the ne = nc/4 density isocontour.

The wave-particle momentum exchange also leads to
an acceleration of the flow at the LEH as shown in Fig. 7d
(the initial flow velocity calculated by Lasnex, projected
along the z direction, is shown in Fig. 7c). Because all
the beat waves’ phase velocities point towards z > 0 (cf.
Fig. 3: all the transverse component cancel each other
out, but the z components are all positive and can all add
up), the average acceleration is also directed towards z >
0. The acceleration rate is relatively modest compared to
the heating: the flow is being accelerated from its initial
value at < 5% per 100 ps.

The orientation of the beat waves towards z > 0 is
due to the choice of ∆λ > 0, i.e. λinners > λouters, be-
cause transfer from the outer beams to the inner beams

is currently required on NIF in order to achieve symmet-
ric implosion due to impaired propagation if the inner
beams, which undergo stronger than anticipated absorp-
tion in the plasma as well as significant backscatter [21].

However, if for any reason ∆λ had to be set to nega-
tive values to transfer power from the inner to the outer
beams (as could be the case for a different type of target,
for example if the outer beams have more backscatter
than the inner beams), then the process would be re-
versed, and the acceleration from momentum deposition
would be directed towards z < 0, i.e. against the existing
flow direction.

FIG. 8. a) phase velocities of the 276 beat waves for the case
where ∆λ = λinners − λouters < 0, with ∆λ=-8 Å; b) result-
ing flow acceleration along z, dVz/dt, showing an expected
deceleration of the flow at the LEH (dVz/dt < 0 whereas the
initial flow velocity is positive, as seen in Fig. 7c).

This is what is illustrated in Fig. 8. The beat waves’
phase velocities are shown in Fig. 8a for ∆λ=-8 Å. The
velocity vectors have their sign reversed compared to Fig.
3. As a result, the flow acceleration along z is negative,
as shown in Fig. 8b. Since the flow is near sonic at the
LEH (and supersonic just outside), similarly to a nozzle
flow, the drag resulting from momentum deposition in
the opposite direction as the flow direction may, under
certain conditions, result in the formation of a bow shock
[22].

V. CONCLUSION

In summary, we have shown that stochastic ion heat-
ing from many beat waves created by multiple crossing
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laser beams can be an efficient saturation mechanism
for CBET. For typical wavelength separations on NIF
(∆λ ∼4 to 10 Å) and typical ion temperatures (near 1
keV), the phase velocities of the beat waves extend from
zero to a few times the thermal velocity, which leads to
strong wave-particle coupling. As a result, energy and
momentum are both deposited in the plasma. Thermal-
ization from ion-ion collisions transfer the energy gained
by energetic particles into the bulk, leading to rapid ion
heating. For such conditions, we expect that the ion tem-
perature will rise until the plasma sound speed becomes
larger than all the beat waves’ phase velocities. At this
point, most of the beat waves’ phase velocities are also
smaller than the ion thermal velocity. In this regime, the
laser beams’ CBET gains have a linear dependence with
∆λ, the wavelength shift between cones of laser beams on
NIF. Strong heating rates are expected in a ∼ mm3-scale
volume at the LEH of NIF hohlraums. The plasma flow
should also be modified from momentum deposition: in
the case of power transfer from “outer” to “inner” beams,
as is currently the case for NIF experiments, the flow
near the LEH should be accelerated; on the other hand,
for experiments where power transfer would be required
to occur in the opposite direction, i.e. from the outer
beams to the inner beams, the flow would be decelerated
near the LEH. A self-consistent hydrodynamics package
including a ray-based CBET model, together with the
associated ion heating and momentum deposition is cur-
rently being tested in the Hydra and Lasnex codes.

Appendix: Reduced fluid model and estimates of
electron heating

The quasi-linear theory can be used to calculate the
evolution of the momentum and temperature. If the colli-
sions thermalize the ion distribution rapidly enough, then
a local Maxwellian approximation can be used.

The momentum evolution is given by:

dV

dt
=

1

ni

∫
d3v

∂f0(v, t)

∂t
v. (A.1)

Replacing ∂tf0 by its expression from Eq. (25) and
integrating by parts gives:

dV

dt
=

−1

8πnimi

∑
k

|φ̂k(t)|2kk2Im(χik(t)). (A.2)

The energy gained (or lost) by the fluid as kinetic en-
ergy is dUflow/dt = miV dV /dt, i.e.:

dUflow
dt

=
−1

8πni

∑
k

|φ̂k(t)|2k2k · V Im(χik(t)).(A.3)

Similarly, the total energy (kinetic + thermal) gained
by the ion fluid is dUtot/dt = 1

2mi〈v2〉, i.e.:

dUtot
dt

=
mi

2ni

∫
d3vv2 ∂f0(v, t)

∂t
. (A.4)

The integration gives:

dUtot
dt

=
1

8πni

∑
k

|φ̂k(t)|2k2ωkIm(χik(t)). (A.5)

This is the usual wave-particle energy conservation re-
lation from quasi-linear theory, i.e.:

d

dt

(
ni

∫ ∞
−∞

miv
2

2
f0(v, t)d3v

)
=
∑
k

γk
|Êk|2

8π
,(A.6)

where Êk = −ikφ̂k, and γk = −ωkIm(χik) is the wave’s
growth rate.

The temperature can simply be derived as 3
2kBTi =

1
2mi[〈v2〉 − 〈v〉2] = Utot − Uflow, which gives:

dkBTi
dt

=
1

12πni

∑
k

|φ̂k(t)|2k2(ωk − k · V )Im(χik(t)).(A.7)

The two equations for the momentum and tempera-
ture, Eqs. (A.7) and (A.2), can be coupled via the quasi-
linear expression of χik(t) assuming a local Maxwellian,
which reads:

χik(t) =
−1

2(kλDi)2
Z ′
[
ωk − k · V (t)√

2kvTi(t)

]
. (A.8)

Finally, we can also estimate the effect of the beat
waves on the electron temperature. The derivation is
similar to the one for the ions, except for the force in the
Vlasov equation which must account for the ponderomo-
tive potential in addition to the electrostatic potential for

each beat wave, with ϕ̂p,k + φ̂k = −(1 + χik)φ̂k/χek. To
estimate the effect of weak turbulence on the electrons
compared to the ions, we express the total energy gained
by the electron fluid:

dUe,tot
dt

=
1

8πne

∑
k

|φ̂k(t)|2
∣∣∣∣1 + χik
χek

∣∣∣∣2 k2ωkIm(χek(t)).(A.9)

This means that for an infinitesimal time step, the en-
ergy increment due to each beat wave for the electrons,
δUek, and the ions, δUik, have the following ratio:

δUek
δUik

=
1

Z

Im(χek)

Im(χik)

∣∣∣∣ χek
1 + χik

∣∣∣∣2 . (A.10)

If the driven wave is an ion acoustic wave, in which
case its wavelength and frequency exactly verify vk = cs,
then εk = 1 + χek + χik = 0 and the last term on the
right-hand side equals 1. The ratio of electron vs. ion
heating is then simply equal to the ratio of electron vs.
ion Landau damping, which is expected to be negligible
for ion acoustic waves. This will typically not be the
case for NIF since the phase velocities are externally pre-
scribed and typically verify vk � cs, but the electron
heating will still be negligible, in fact even more so than
for a pure ion acoustic wave.
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To make this more evident, we take the limit of small
∆λ, where vk � vTi (and a fortiori , vk � vTe). In this
limit, we have:

χek '
1

κ2

[
1 + i

√
π

2

vk
vTe

]
, (A.11)

χik '
ZTe
Ti

1

κ2

[
1 + i

√
π

2

vk
vTi

]
, (A.12)

where κ = kλDe. Therefore we get:

δUek
δUik

'
√

me

Zmi

(
Ti
ZTe

)3/2
1

((ZTe/Ti) + κ2)
,(A.13)

or:

δUek
δUik

'
√

me

Zmi

(
Ti
ZTe

)7/2

(A.14)

if ZTe/Ti � κ2.

It is now evident that the energy going into the elec-
trons is negligible compared to that going into the ions.
For example, for a helium plasma with Te = Ti, we have
δUek ' 1.5× 10−3δUik.
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